Sökresultat

Filtyp

Din sökning på "*" gav 535772 sökträffar

No title

Lunds Tekniska Högskola Matematik Helsingborg Lösningar Linjär algebra, FMAA55 2025-06-05 1. a) Vektorerna u och v är ortogonala om u · v = 0. Beräkning ger u · v = 0⇐⇒ (1,−1, 2) · (1, a, 3) = 0⇐⇒ 1− a+ 6 = 0⇐⇒ a = 7. b) Då cos ([u,w]) = u ·w |u| |w| = (1,−1, 2) · (1, 2,−1) |(1,−1, 2)||(1, 2,−1)| = 1 · 1 + (−1) · 2 + 2 · (−1)√ 12 + (−1)2 + 22 · √ 12 + 22 + (−1)2 = 1− 2− 2√ 6 √ 6 = −3 6 = −1 2 blir

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Loesningar/Solution_Linjaer_Algebra_FMAA55_2025_06_05.pdf - 2025-08-21

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg TENTAMENSSKRIVNING LINJÄR ALGEBRA, FMAA55 2024-08-27 kl 8.00-13.00 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar och svaren förenklas maximalt. Alla baser och koordinatsystem får antas vara ortonormerade och positivt orienterade, om inte annat anges. 1. Betrakta linjerna ℓ1 : (x, y, z) = (1 + t, 2− t,−3− 2t) och ℓ2 : (x,

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Tentor/Tentamen___Linjaer_Algebra_FMAA55_2024_08_27.pdf - 2025-08-21

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg TENTAMENSSKRIVNING LINJÄR ALGEBRA, FMAA55 2025-06-05 kl 8.00–13.00 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar och svaren förenklas maximalt. Alla baser och koordinatsystem får antas vara ortonormerade och positivt orienterade, om inte annat anges. 1. Låt u = (1,−1, 2), v = (1, a, 3) och w = (1, 2,−1). a) Bestäm talet a

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Tentor/Tentamen___Linjyr_Algebra_FMAA55_2025_06_05.pdf - 2025-08-21

No title

Matematisk statistik Lösning: 2023–04–12 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik Lösningsförslag 1. För ξ ∼ R(1, 4) gäller F (x) = x−1 3 , 1 ≤ x ≤ 4, men denna m̊aste inte beräknas för att lösa uppgiften. (a) Vad är F (1) = 0 och F (4) = 1 eftersom de motsvarar P (ξ < x) för minsta respektive största värdet. (0.3) (b) P (ξ1 ≤ 2.5 ∩ · · · ∩ ξ4

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Loesningar/fmsf30_32_230412_lsn.pdf - 2025-08-21

No title

Matematisk statistik Tentamen: 2023–10–27 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Lösningsförslag 1. Definiera händelserna S - en person är sjuk, samt T - en person testar positivt. Ur texten f̊as P (S) = 0.001, P (T |S) = 0.99 samt P (T |Sc) = 0.005, där Sc är komplementhändelsen till sjuk, dvs frisk. (a) Sannolikheten att en slumpmässig perso

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Loesningar/fmsf30_32_231027_lsg.pdf - 2025-08-21

No title

Matematisk statistik Tentamen: 2024–04–03 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik Lösningsförslag 1. Beteckna händelsen A: läser tidning A, och motsvarande för B och C. Vi har d̊a P (A) = 1/3, P (B) = 1/4, P (C) = 1/6, P (A ∩B) = 1/6, P (B ∩ C) = 1/12, samt P (A ∩ C) = 0. (a) Om A och C är oberoende gäller P (A ∩ C) = P (A)P (C). Dock är 0 ̸= 1/3

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Loesningar/fmsf30_32_240403_lsg.pdf - 2025-08-21

No title

Matematisk statistik Tentamen: 2024–08–30 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik Lösningsförslag 1. Beteckna händelserna: Ai: lampa i fungerar (a) (0.3) P (alla fungerar) = P (A1 ∩A2 ∩A3) = P (A1)P (A2|A1)P (A3|A1 ∩A2) = 6 10 · 5 9 · 4 8 = 1 6 (b) (0.3) P (A1 ∩A2 ∩Ac 3) = P (A1)P (A2|A1)P (Ac 3|A1 ∩A2) = 6 10 · 5 9 · 4 8 = 1 6 (c) Vi kan f̊a exakt tv

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Loesningar/fmsf30_32_240830_lsg.pdf - 2025-08-21

No title

Matematisk statistik Tentamen: 2023–04–12 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Hjälpmedel: Miniräknare och utdelad formelsamling • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maximalt • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper • P̊a omslaget m̊aste du skriva med bläck • Skriv endast p̊a en

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_230412.pdf - 2025-08-21

No title

Matematisk statistik Tentamen: 2023–08–25 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Hjälpmedel: Miniräknare och utdelad formelsamling • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maximalt • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper • P̊a omslaget m̊aste du skriva med bläck • Skriv endast p̊a en

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_230825.pdf - 2025-08-21

No title

Matematisk statistik Tentamen: 2024–10–29 kl 1400–1900 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Till̊atna hjälpmedel: Miniräknare samt utdelad formelsamling (häftad med tentamen). • Tentamen best̊ar av 6 uppgifter om 1.0 poäng vardera, med delpoäng om minst 0.1 poäng. • Betygsgränser: Betyg 3 (godkänt): 3.0 poäng. Betyg 4: 4.0 poäng. Betyg 5: 5.0 poäng.

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_241029.pdf - 2025-08-21

No title

Lunds Tekniska Högskola Matematik Helsingborg Lösningar, FMSF40 Sannolikhetsteori och Diskret Matematik 2023-10-27 1. a) Vi har 1 = ∫ ∞ −∞ f(x) dx = ∫ 0 −∞ k · e3x dx+ ∫ ∞ 0 1 3 e−x dx = [ k · 1 3 e3x ]0 −∞ + [ 1 3 · 1 −1 · e−x ]∞ 0 = k · 1 3 − 0 + 0− ( −1 3 ) = k 3 + 1 3 = k+1 3 . Vi har allts̊a 1 = k+1 3 vilket ger k = 2. b) Om x ≤ 0 gäller F (x) = ∫ x −∞ f(t) dt = ∫ x −∞ 2e3t dt = [ 2 · 1 3

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Loesningar/Solution_Sannolikhetsteori_och_Diskret_Matematik_FMSF40_2023_10_27.pdf - 2025-08-21

No title

Lunds Tekniska Högskola Matematik Helsingborg Lösningar, FMSF40 Sannolikhetsteori och Diskret Matematik 2024-04-03 1. a) Om ξ betecknar antallet bl̊a kaniner gäller ξ ∈ Hyp(15, 5, 6/15). Vi har d̊a P (A) = P (ξ ≥ 2) = 1− P (ξ ≤ 1) = 1− ( P (ξ = 0) + P (ξ = 1) ) = 1− (( 6 0 )( 9 5 )( 15 5 ) + ( 6 1 )( 9 4 )( 15 5 ) ) = 1− ( 1 · 126 3003 + 6 · 126 3003 ) = 101 143 = 0.706293 Antallet gula kaniner

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Loesningar/Solution_Sannolikhetsteori_och_Diskret_Matematik_FMSF40_2024_04_03.pdf - 2025-08-21

No title

Matematik LTH Helsingborg Tentamensskrivning, FMSF40 Sannolikhetsteori och diskret matematik 2023-04-12 kl 8.00–13.00 • Hjälpmedel: Miniräknare och utdelad formelsamling. • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maxi- malt. • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper. • P̊a omslaget m̊aste du skriva med bläck. • Skriv endast p̊a ena

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Tentor/Tentamen___Sannolikhetsteori_och_diskret_matematik___FMSF40_2023_04_12.pdf - 2025-08-21

No title

Matematik LTH Helsingborg Tentamensskrivning, FMSF40 Sannolikhetsteori och diskret matematik 2023-08-25 kl 8.00–13.00 • Hjälpmedel: Miniräknare och utdelad formelsamling. • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maxi- malt. • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper. • P̊a omslaget m̊aste du skriva med bläck. • Skriv endast p̊a ena

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Tentor/Tentamen___Sannolikhetsteori_och_diskret_matematik___FMSF40_2023_08_25.pdf - 2025-08-21

No title

Matematisk statistik Tentamen: 2024–11–01 kl 0800–1300 Matematikcentrum FMSF40 Lunds universitet Sannolikhetsteori och diskret matematik • Till̊atna hjälpmedel: Miniräknare samt utdelad formelsamling (häftad med tentamen). • Tentamen best̊ar av 10 uppgifter om 0.6 poäng vardera, med delpoäng om minst 0.1 poäng. • Betygsgränser: Betyg 3 (godkänt): 3.0 poäng. Betyg 4: 4.0 poäng. Betyg 5: 5

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Tentor/fmsf40_tenta_241101.pdf - 2025-08-21

No title

Study programmes board Rules and recommendations for first-cycle degree projects at the Faculty of Science from 15 September 2008 onwards This document provides the Faculty’s rules and recommendations for first-cycle degree projects, in accordance with a Study Programmes Board decision of 15 September 2008, revised most recently on 18 October 2012. These degree projects are usually worth 15 higher

https://www.maths.lu.se/fileadmin/maths/Matematik_NF/Kandidatprogram/Rules_and_recommendations_for_first-cycle_degree_projects_at_the_Faculty_of_Science_from_15_September_2008_onwards.pdf - 2025-08-21

No title

KANDIDATPROGRAM I MATEMATIK MATEMATIKCENTRUM NATURVETENSKAPLIGA FAKULTETEN LUNDS UNIVERSITET REKOMMENDERAD STUDIEGÅNG, VÅRTERMINSSTART TERMIN 1 VÅR 2 HÖST 3 VÅR 4 HÖST 5 VÅR 6 HÖST LÄSPERIOD 1 LÄSPERIOD 2 Analys 1 Lineär algebra Diskret matematik eller Lineär analys Valfri kurs Valfri kurs Beräkningsmatematikens verktyg Valfri kurs Numerisk lineär algebra Sannolikhetsteori Valfri kurs Numerisk app

https://www.maths.lu.se/fileadmin/maths/Matematik_NF/Kandidatprogram/rekommenderad_studiegaang_vaar.pdf - 2025-08-21

Microsoft Word - NAMAT-MATE-ENG.docx

Microsoft Word - NAMAT-MATE-ENG.docx Appendix to Programme Syllabus established by the Board of the Faculty of Science on 2007-02-07. The Course requirements have been approved by the Study Programmes Board on 2012-03-29. COURSE REQUIREMENTS FOR A GENERAL QUALIFICATION Degree of Master of Science 120 credits Major: Mathematics Programme: Master Programme in Mathematics 120 credits ELECTIVE COURSES

https://www.maths.lu.se/fileadmin/maths/Matematik_NF/Masterprogram/NAMAT-MATE-ENG.pdf - 2025-08-21

Microsoft PowerPoint - PREP-Öresundsdagen20221102

Microsoft PowerPoint - PREP-Öresundsdagen20221102 2022‐11‐04 1 PREP ‐ Pragmatic Research on Educational Practice Öresundsdagen 2022‐11‐02 Starting point Ambitious university teachers • tries different things in their teaching and strives to understand the effect • often do not have time, data or ambition to write an article for a scientific educational journal ... hence, the ideas and lessons lear

https://www.maths.lu.se/fileadmin/maths/Oresundsdagen_3/bengmark.pdf - 2025-08-21

PowerPoint-presentation

PowerPoint-presentation KARLSTAD UNIVERSTITY Department of Mathematics and Computer Science| Brunström, Fahlgren, Vinerean, and Wondmagenge DIGITAL TOOLS TO SUPPORT FIRST YEAR STUDENTS’ MATHEMATICAL THINKING Øresundsdagen 3 Lund University, 2th November 2022 Mats Brunström, Maria Fahlgren, Mirela Vinerean, and Yosief Wondmagegne KARLSTAD UNIVERSTITY Department of Mathematics and Computer Science|

https://www.maths.lu.se/fileadmin/maths/Oresundsdagen_3/brunstrom_etal.pdf - 2025-08-21