Diffusion-driven current transport to near-surface nanostructures
Diffusion-driven current transport (DDCT) has recently been proposed as a new way to organize the current injection in nanoscale optoelectronic devices. The very recent first proof-of-principle experiments have also shown that DDCT works as predicted theoretically. In this work we perform simulations on DDCT-based III-Nitride devices and demonstrate how the optimization of DDCT differs significant