Singular Ginzburg-Landau Vortices
In this thesis we study the critical Ginzburg-Landau action, defined on fields in the plane which are allowed to have a finite number of singularities. We show that a topological invariant, the degree, can be defined under the assumption of finite action only. The action is bounded below by a constant times the degree, and the fields which realize this lower bound satisfy a first order differentia
