Bounds for Calderón–Zygmund operators with matrix A2 weights
It is well-known that dyadic martingale transforms are a good model for Calderón–Zygmund singular integral operators. In this paper we extend some results on weighted norm inequalities to vector-valued functions. We prove that if W is an A2 matrix weight, then the weighted L2-norm of a Calderón–Zygmund operator with cancellation has the same dependence on the A2 characteristic of W as the weighted