epsilon-Pisot numbers in any real algebraic number field are relatively dense
An algebraic integer is called an epsilon-Pisot number (epsilon > 0) if its Galois conjugates have absolute value less then epsilon. Let K be any real algebraic number field. We prove that the subset of K consisting of epsilon-Pisot numbers which have the same degree as that of the field is relatively dense in the real line R. This has some applications to non-stationary products of random matrice