Tuning the Two-Electron Hybridization and Spin States in Parallel-Coupled InAs Quantum Dots
We study spin transport in the one- and two-electron regimes of parallel-coupled double quantum dots (DQDs). The DQDs are formed in InAs nanowires by a combination of crystal-phase engineering and electrostatic gating, with an interdot tunnel coupling (t) tunable by one order of magnitude. Large single-particle energy separations (up to 10 meV) and |g∗| factors (∼10) enable detailed studies of the