On the essential spectrum of a class of singular matrix differential operators. I: Quasiregularity conditions and essential self-adjointness
The essential spectrum of singular matrix differential operator determined by the operator matrix (-d/dx rho(x)d/dx + q(x) d/dx . beta/x - beta/x . d/dx m(x)/x(2))) is studied. It is proven that the essential spectrum of any self-adjoint operator associated with this expression consists of two branches. One of these branches (called regularity spectrum) can be obtained by approximating the operato