Using Bayesian neural networks with ARD input selection to detect malignant ovarian masses prior to surgery
In this paper, we applied Bayesian multi-layer perceptrons (MLP) using the evidence procedure to predict malignancy of ovarian masses in a large (n = 1,066) multi-centre data set. Automatic relevance determination (ARD) was used to select the most relevant inputs. Fivefold cross-validation (5CV) and repeated 5CV was used to select the optimal combination of input set and number of hidden neurons.