Assessing cereal grain quality with a fully automated instrument using artificial neural network processing of digitized color video images
A fully integrated instrument for cereal grain quality assessment is presented. Color video images of grains fed onto a belt are digitized. These images are then segmented into kernel entities, which are subject to the analysis. The number of degrees of freedom for each such object is decreased to a suitable level for Artificial Neural Network (ANN) processing. Feed- forward ANN's with one hidden