An abstract approach to approximation in spaces of pseudocontinuable functions
We provide an abstract approach to approximation with a wide range of regularity classes X in spaces of pseudocontinuable functions Kp Θ, where Θ is an inner function and p > 0. More precisely, we demonstrate a general principle, attributed to A. Aleksandrov, which asserts that if a certain linear manifold X is dense in Kq Θ for some q > 0, then X is in fact dense in Kp Θ for all p > 0. Moreover,