On a weighted Laplace differential operator for the unit disc
It is well-known that the classical Poisson kernel for the unit disc $\D$ in the complex plane is naturally associated to the Laplacian. In a recent paper Duman has shown that Poisson integrals with respect to the kernel $$ K_2(z)=\frac{1}{2}\frac{(1-\lvert z\rvert^2)^3}{\lvert 1-z\rvert^4}, \quad z\in\D, $$ solve the Dirichlet problem for the unit disc for a certain second order differential oper
