Grain boundary and particle interaction: Enveloping and pass-through mechanisms studied by 3D phase field crystal simulations
Grain boundary interaction with second-phase particles having different degrees of coherency is investigated using the phase field crystal (PFC) method. Both the enveloping and pass-through mechanisms are studied with regards to grain boundary pressure, passage time and interface evolution. It is found that coherent particles exert a stronger retardation effect on grain boundaries compared to incoGrain boundary interaction with second-phase particles having different degrees of coherency is investigated using the phase field crystal (PFC) method. Both the enveloping and pass-through mechanisms are studied with regards to grain boundary pressure, passage time and interface evolution. It is found that coherent particles exert a stronger retardation effect on grain boundaries compared to inco
