High-quality annotations for deep learning enabled plaque analysis in SCAPIS cardiac computed tomography angiography
Background: Plaque analysis with coronary computed tomography angiography (CCTA) is a promising tool to identify high risk of future coronary events. The analysis process is time-consuming, and requires highly trained readers. Deep learning models have proved to excel at similar tasks, however, training these models requires large sets of expert-annotated training data. The aims of this study were