Grain boundary influence on the mechanical response to tensile loading for nanosized Cu beams modelled by MD simulations
The influence of grain boundaries on the mechanical properties of poly-crystalline metals is well known. Here we investigate the influence from a centrally placed grain boundary in nano-sized beams of Cu subjected to tensile loading. The crystallographic orientations in the grains are [100], [110] and [111]. The investigation is performed by means of molecular dynamic simulations employing the molThe influence of grain boundaries on the mechanical properties of poly-crystalline metals is well known. Here we investigate the influence from a centrally placed grain boundary in nano-sized beams of Cu subjected to tensile loading. The crystallographic orientations in the grains are [100], [110] and [111]. The investigation is performed by means of molecular dynamic simulations employing the mol