Approximate counting of K-paths : Deterministic and in polynomial space
A few years ago, Alon et al. [ISMB 2008] gave a simple randomized O((2e)km∊−2)-time exponential-space algorithm to approximately compute the number of paths on k vertices in a graph G up to a multiplicative error of 1 ± ∊. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010] gave a deterministic exponential-space algorithm with running time (2e)k+O(log3 k)m log n whenever ∊−1 = kO(1). Recen