Fast Microscale Acoustic Streaming Driven by a Temperature-Gradient-Induced Nondissipative Acoustic Body Force
We study acoustic streaming in liquids driven by a nondissipative acoustic body force created by light-induced temperature gradients. This thermoacoustic streaming produces a velocity amplitude nearly 100 times higher than the boundary-driven Rayleigh streaming and the Rayleigh-Bénard convection at a temperature gradient of 10 K/mm in the channel. The Rayleigh streaming is altered by the acoustic