Simplicity of partial skew group rings with applications to Leavitt path algebras and topological dynamics
Let A be a commutative and associative ring (not necessarily unital), G a group and α a partial action of G on ideals of A, all of which have local units. We show that A is maximal commutative in the partial skew group ring A*G if and only if A has the ideal intersection property in A*G. From this we derive a criterion for simplicity of A*G in terms of maximal commutativity and G-simplicity of A.