Probabilistic Joint Image Segmentation and Labeling by Figure-Ground Composition
We propose a layered statistical model for image segmentation and labeling obtained by combining independently extracted, possibly overlapping sets of figure-ground (FG) segmentations. The process of constructing consistent image segmentations, called tilings, is cast as optimization over sets of maximal cliques sampled from a graph connecting all non-overlapping figure-ground segment hypotheses.
