Numerical solution of distributed-order time-fractional diffusion-wave equations using Laplace transforms
In this paper, we consider the numerical inverse Laplace transform for distributed order time-fractional equations, where a discontinuous Galerkin scheme is used to discretize the problem in space. The success of Talbot's approach for the computation of the inverse Laplace transform depends critically on the problem's spectral properties and we present a method to numerically enclose the spectrum
